# Re: HP PRIME GRAPHING CALCULATOR – Technical data and performance comparison with others.

a month ago

Miguel,

I think it’s important to precise that all of this is absolutely not official.

Perhaps these specs are true. Perhaps not … At this stage, it’s only rumors. The only official annoncement is the video and noting on specs inside.

# Re: HP PRIME GRAPHING CALCULATOR – Technical data and performance comparison with others.

[ Edited ]

a month ago – last edited a month ago

Hi!, all:

The first program, of Fractals, for HP PRIME GRAPHING CALCULATOR, from … http://www.calc-bank.com/

BEGIN

LOCAL iter := 0;

LOCAL z := (0,0);

WHILE (ABS(z) <= bailoutValue) AND (iter < maxIter) DO

z := z*z+c;

iter := iter+1;

END;

RETURN iter;

END;

LSclr(Ndx)

BEGIN

Ndx := ROUND(Ndx*186,0);

IF Ndx < 31 THEN RETURN 0+ 1*Ndx; END;

IF Ndx < 62 THEN RETURN 31+ 32*(Ndx-31); END;

IF Ndx < 93 THEN RETURN 1023- 1*(Ndx-62); END;

IF Ndx < 124 THEN RETURN 992+ 1024*(Ndx-93); END;

IF Ndx < 155 THEN RETURN 32736- 32*(Ndx-124); END;

IF Ndx < 186 THEN RETURN 31744+ 1*(Ndx-155); END;

RETURN 31775;

END;

colorize(itVal, maxIt)

BEGIN

IF itVal==maxIt THEN

// We are inside the Mandelbrot map

// Then the pixel is drawn in blackRETURN 0;

ELSE

RETURN LSclr(itVal/maxIt);

END;

END;

EXPORT Mandelbrot()

BEGIN

// Clean the screen (G0):RECT();

LOCAL dx, dy, c, xp, yp;

LOCAL iter, color;

// These 4 variables defined

// Our window of the complex plane

LOCAL xmin, xmax, ymin, ymax;

LOCAL maxIterations := 50;

LOCAL maxRadius := 2;

// Location

// Radio width to height should be 4:3

xmin := -2.5;

xmax := 1.5;

ymin := -1.5;

ymax := 1.5;

// Other parameters better:

//xmin := 0.315625;

//xmax := 0.515625;

//ymin := 0.28125;

//ymax := 0.43125;

dx := (xmax-xmin)/320;

dy := (ymax-ymin)/240;

c := (xmin,ymin);

// we loop over each pixel

// Of the screen wil Prime:

FOR yp FROM 0 TO 239 DO

FOR xp FROM 0 TO 319 DO

// Create the complex number c

// We need for iteration:

c := (xmin+xp*dx, ymax-yp*dy);

// Now iterate the formula and

// Return the number of iteration steps

// That was taken up

// That the complex number jump out

// The radius of convergence:

iter := iteration(c, maxRadius, maxIterations);

// Determines a color for the iteration number:color := colorize(iter, maxIterations);

// Change color to that pixel:

PIXON_P(xp, yp, color);

END;

END;

// deja la imagen en la pantalla

// hasta que se presiona una tecla:

REPEAT UNTIL GETKEY() == -1;

FREEZE;

END;

if you consider … click the KUDOS Star, on the left, to show appreciation, or Thanks.

Best Regards.

HP-MACH